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The intensity changes produced in single-crystal diffraction reflections when one or more secondary 
reflections occur simultaneously are discussed both theoretically and experimentally. The theory 
is an extension of the usual treatment of secondary extinction, based on the mosaic crystal model. 
An approximate solution, valid in the thin crystal limit, is in good agreement with neutron diffrac- 
tion experiments on single crystals of iron. Both theory and experiment demonstrate the importance 
of sample geometry on the magnitude and sign of the simultaneous reflection effects. The effects may 
be minimized by controlling the sample geometry in addition to the usual precautions taken to 
reduce secondary extinction. 

I n t r o d u c t i o n  

The in terpre ta t ion  of the  in tens i ty  found in a single- 
crysta l  diffraction reflection is based on the assumpt ion 
tha t  only one Bragg reflection is occurring. However, 
i t  has long been known tha t  the s imultaneous oc- 
currence of a second reflection is not  uncommon and  
t ha t  the presence of a second reflection modifies the 
in tens i ty  of the first  (primary) reflection. In  accurate 
in tens i ty  measurements ,  this  effect is as impor tan t  
as secondary extinction,  yet  i t  has received scant  
a t t en t ion  in the l i terature.  

The s implest  case of one secondary reflection is 
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Fig. 1. Geometric representation of simultaneous reflections 
in the reciproca] lattice. Points 0, 1 and 2 lie on the sphere 
of reflection. The unit vectors S 0, S 1 and S 2 define the 
direction of the incident, primary and secondary beams. 
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i l lus t ra ted  in  Fig. 1. Point  C is the center of the Ewald  
sphere of reflection which passes through the three 
reciprocal la t t ice points  0, 1 and  2. The directions of 
the incident,  p r imary  and  secondary beams are given 
by  uni t  vectors So, $1 and  $2. Ins tead  of the cus tomary 
Miller indices, i t  is convenient  to designate reflection 
processes by  two subscripts which describe the direc- 
t ion of the incident  and  reflected beam. Thus, the 
reciprocal lat t ice vector H12 is associated wi th  a 
reflection from the  direction $1 to the  direction $2. 
I t  is impor tan t  to realize tha t  each of the beams can 
be reflected into each of the other two directions, so 
tha t  when three lat t ice points  are on the sphere, there 
are six reflection processes to consider. 

The f irst  reported observat ion of the  influence of 
s imultaneous X-ray  reflections concerned the  effect 
called 'aufhel lung '  (Wagner, 1920) which corresponds 
to a d iminut ion  of the p r imary  intensi ty .  There are 
two processes constr ibut ing to this  decrease: the re- 
f lection 0-+2 removes power from the incident  beam, 
thereby  decreasing the power avai lable  for t ransfer  
in the 0-+1 reflection; and  the process 1-->2 di rect ly  
removes power from the  p r imary  reflected beam. 
These effects are opposed by  the process 0-+2-+1 which 
adds power to the  p r i m a r y  beam. The increase in  
p r imary  power, called 'umweganregung' ,  was f i rs t  
observed for X-rays  by  Renninger  (1937), who made  
the f irst  thorough exper imenta l  s tudy  of the  s imulta-  
neous reflection effects. His exper iment  consisted in 
posit ioning the crystal  and  detector on a diffract ion 
peak, then  rota t ing the crystal  about  the  scat ter ing 
vector. In  Fig. 1, the  crystal  is ro ta ted  in  az imuth  
about  the reciprocal lat t ice vector H01 and  an  in tens i ty  
change in the p r imary  beam is observed as point  2 
passes through the  sphere of reflection. I-Iis work is 
pr inc ipal ly  remembered  for the large posit ive in tens i ty  
var ia t ions  found in  the forbidden d iamond  (222) 
reflection, bu t  i t  should be noted t ha t  he found both  
positive and negat ive in tens i ty  f luctuat ions of 10 to 
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20 per cent in regular reflections of normal intensity, 
both in diamond and rocksalt. 

Recently, many investigators (Hay, 1959; Spencer 
& Smith, 1959; O'Connor & Sosnowski, 1961;Duggal, 
Rao, Thapar  & Singh, 1961; Schermer, 1961) have 
observed simultaneous reflection effects when analyz- 
ing the thermal neutron spectrum from a reactor by 
means of a crystal monochromator. In this, rapid 
changes in the crystal reflectivity are encountered as 
the scattered neutron energy is varied with scattering 
angle. When the monochromatic beam is used in an 
experiment measuring the transmission of a sample 
as a function of neutron energy, these rapid changes 
in the reflectivity of the monochromating crystal 
can look deceptively similar to a cross section re- 
sonance in the transmission sample. The present paper 
does not concern itself directly with the energy- 
dependent reflectivity, but rather, it will deal with the 
allied intensity problem in single-crystal diffraction 
experiments using nearly monochromatic radiation. 
Recent observations on monochromatic neutron 
intensity effects have been reported by Borgonovi & 
Caglioti (1962). 

The simultaneous reflection problem separates 
natural ly in two parts : determining the crystal orienta- 
tion at  which simultaneous reflections occur, and 
determining the intensity effect in a given primary 
reflection due to one or more secondary reflections. 
The orientation problem has been discussed elsewhere 
(Alexander, Fraenkel & Kalman, 1957; Cole, Chambers 
& Dunn, 1962), but the intensi ty problem has not 
been adequately treated. Mayer (1928) a t tempted to 
explain the 'aufhellung' effect in terms of Ewald's 
dynamical theory of X-ray diffraction. Renninger 
(1937) presented some helpful semi-quantitative 
arguments, but  his t reatment  fell short of providing 
useful quanti tat ive relationships. O'Connor & Sosnow- 
ski (1961) presented an approximate theory which 
agreed well with their observations using a neutron 
crystal  spectrometer, but they omitted from the theory 
any mechanism which can result in 'Umweganregung'. 
Schermer (1961) has considered the formal solution 
of the intensity problem and worked out solutions in 
several cases of practical interest. 

In the next section we present an approximate 
theory of the simultaneous reflection intensity problem 
for neutron diffraction which is valid in the limit of 
low secondary extinction, Thi~ i~ followed by ~ de- 
scription of neutron diffraction experiments on iron 
single crystals which serve to check the theoretical 
conclusions. Preliminary reports on this work have 
been presented previously (Moon and Shull, 1961; 
Guentert, Moon, Shull & Bekebrede, 1961; Shull, 
1962). 

Theoretical calculation of intensity effects 

We assume a well collimated, nearly monochromatic 
beam of neutrons is incident on a crystal such that  

Bragg reflection occurs from a set of primary reflecting 
planes. We wish to calculate the change in the power 
of this primary reflected beam when the azimuth 
angle is adjusted so tha t  a second Bragg reflection is 
possible. The t reatment  is an extension of theory of 
secondary extinction based on the mosaic crystal 
model, as given, for example, by Bacon & Lowde 
(1948). Pr imary extinction is assumed to be negligible. 
I t  is also assumed tha t  the orientation problem has 
been solved so tha t  direction and indices of all the 
reflected beams are known. 

The angular width associated with the incident beam 
collimation and wavelength spread is assumed to be 
much larger than the width of a perfect crystal reflec- 
tion curve, but  is much smaller than the width of 
the mosaic distribution. Under these conditions the 
reflected power at a particular angular setting of the 
crystal is interpreted as the integrated reflection 
produced by tha t  portion of the mosaic distribution 
which is properly oriented. 

An exchange of power from beam i to beam j is 
described in terms of a linear reflection coefficient 
rij, where 

r~ = Qij W ( A  Oil) . (1) 

Q~j is a well known crystallographic function equal to 
the integrated reflectivity per unit volume of a small 
crystallite and W(AOij) is the mosaic distribution 
function. Note that  r~j = rj~. A discussion of the proper 
evaluation of these reflection coefficients will be given 
later. 

We consider a crystal in the shape of a flat plate 
which is large compared with the incident beam cross 
section. The following differential equations describe 
the change in power in the various beams as they 
traverse a crystal layer of thickness dx at depth x 
below the surface: 

dPo Po P1 P i  
dx  yo (/z +r0t + Zr0~) + - -  r l o + . ~ , - - r i o ,  (2) 

i ~21 i ~2i 

dP1 Po Pl 
+ dx )'o rol )'1 (# + rlo + _~rli) + . ~  P i  . . . . . .  ril , (3) 

i i ~ i  

Pi dP~ Po ro~ + 1)1 rlt - - -  (/g + r~o + r~1-4- • rij) 
± dx  yo ~'t )'~ j . i  

+__YPir j~ ,  (4) 
j . i  ~'j 

where P~ is the power in beam i, ),i is the magnitude 
of the direction cosine of beam i relative to the normal 
to the crystal surface, and/~ is the linear absorption 
coefficient. The subscript 0 refers to the incident beam 
and 1 refers to the primary reflected beam. The 
summations extend over all secondary beams. The 
plus sign on the left side applies to the transmission 
case and the minus sign to the reflection case, as 
i l lustrated in Fig. 2. 

The exact solution of these equations when several 
secondary beams are present is rather formidable and 
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~Po(O) ~ Po(O) P,(O) 

P,(T) Po('T) P~(T) 
(a) (b) 

Fig. 2. Neut ron  beam passage th rough crystal  plate:  
(a) P r imary  and secondary beams in transmission. 
(b) P r imary  beam in reflection; secondary beam in trans- 
mission. 

probably not too useful owing to the multitude of 
special cases that  are encountered in practice. 
Fortunately, a useful approximate solution can be 
obtained quite easily. We consider the case of low 
secondary extinction and low absorption, which is the 
usual case in experiments where quantitative use of 
intensity measurements is necessary. For the neutron 
case this implies that  rijli < 1 and #li < 1, where It 
is the path length of beam i in the crystal. If the 
crystal is of thickness T, then 

li = T/~' i .  (5) 

For the case illustrated in Fig. 2(a), in which all 
secondary beams are of the transmission type, the 
boundary conditions at x = 0  are P0=P0(0) and 
P l = P i = 0 .  We use a Taylor's series expansion of 
Pl (x )  about the point x=0 ,  retaining terms up to the 
second order: 

P~(T)  = PI(o)+dPI~ ~=o d2P1 ~=o T~" T + ½-~Tx2 . (6) 

Using the boundary conditions, the first term of 
equation (6) is zero and the second term is equal to 
Po(O)ro~lo. The third term is obtained by differentiating 
equation (3) and using the boundary conditions and 
equations (2), (3) and (4) to evaluate the resulting 
first derivatives. We obtain 

PI(  T)/Po(O ) = rollo - ½roilo[#lo +lull + rollo + rloll 

+ ~'(ro~lo + r~il~)] + 1.~ro~lor~l~. (7) 
i i 

"If there are no secondary reflectiorm, the corresponding 
solution is obtained by setting all r0~ equal to zero. 
The pure primary reflected power is thus, 

PI(T)/Po(O) -- r01/0[1 - ½(#lo + # l l  + roilo + rl0/l)]. (8) 

The change in the primary reflection caused by the 
presence of the secondary beams is given by the 
difference between equations (7) and (8), 

d P l ( T ) / P o ( O )  = ½~,( - rolloro~lo- rollorl~ll + ro~lor~ll~) . (9) 
i 

Consider first the solution for the case of no secon- 

dary reflections, which is easy to solve exactly (See 
Bacon & Lowde, 1948 or Zachariasen, 1945). The 
exact solution for the symmetric transmisson case 
with one reflected beam is 

PI(T)/Po(O) = ½ [ 1 - e x p ( -  2r01/0)]exp(-td0 ) . (10) 

I t  is easily shown that  equation (10) reduces to equa- 
tion (8) in the limit rollo < 1 and tel0 < 1. Recall that  
rol=-rlo and lo=l l  for symmetric transmission. I t  is 
more interesting to note that  the exact solution for 
the symmetric reflection case also reduces to equa- 
tion (8) even though the boundary conditions are 
different. This may be most easily seen from the zero 
absorption case, for which the exact solution for the 
symmetric reflection case is 

PI(T)/Po(O) -- ro~lo/(1 + rollo) . (11) 

The fact that  equation (8) is a good approximation in 
the low extinction limit for either the transmission or 
reflection cases illustrates an important property of 
the approximate solution when simultaneous reflec- 
tions are present. I t  can be shown that  equation (7) 
is valid up to terms of second order in the reflectivities 
regardless of the boundary conditions, provided that  
we are dealing with a flat plate sample. That is, the 
reflected beams can be of either transmission type or 
reflection type or any mixture thereof. 

The effects of simultaneous reflections are con- 
veniently discussed by examining equation (9). The 
two negative terms are similar to the usual secondary 
extinction correction and describe the effect called 
'aufhellung'. The first term of equation (9) represents 
that  portion of the power reflected from the incident 
beam into beam i, which would have been reflected 
into the primary beam in the absence of the secondary 
reflection. The second term accounts for the direct 
reduction of the primary beam by reflection into the 
various secondary beams. The third term accounts for 
'umweganregung', the increase in the primary beam 
by reflections into this beam from all the secondary 
beams. 

We turn now to an evaluation of the reflectivity 
coefficients, defined in equation (1). The familiar 
expressions for Q and the mosaic distribution function 
are valid when the crystal is rotated about an axis 
normal to the incident and reflected beams, as in the 
usual rocking curve experiment. This relationship will 
not be satisfied for the secondary reflections, so we 
desire general expressions for Q and the mosaic 
distribution, valid for rotation about an arbitrary 
axis. We assume the mosaic distribution to be of 
Gaussian form 

W(/IO~j) = [(2~)½~] -~ exp [-(/lO~j)2/2~'], (12) 

where/lO~j is the deviation in Bragg angle from the 
mean of the distribution. I t  can be shown that  

/10~1 = (sin y~ cos Z cos t/sin 20)~j/le = K [ / i e ,  (13) 
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where As is a small change in angle about an arbitrary 
axis and the angles are defined in Fig. 3. The mosaic 
distribution may now be written in terms of the 
general rotation angle and renormalized to unity, 

W(As) = K~s[(2x)½U]-~ exp [-(K~sAe)2/2vl ~] . (14) 

Zachariasen (1945) has given an expression for Q for 
an arbitrary crystal rotation. In neutron terminology, 
his equation is 

' ( ~'~-"WlFI~ )=(St~.ZV~IFt~] 1 47,,(15) 
Q# = s i n v c o s z c o s ~  is \ s-~n-~ ] ii~i; = K[; 

where 2 is the wavelength, A~ is the number of unit 
cells per unit volume and F is the structure factor 
per unit cell. The quantity Q,s is the Q associated with 
the integrated intensity in a normal crystal rotation 
experiment. 

t ~ 

Fig. 3. Defini t ion of angles involved in crys ta l  ref lect ivi ty  ri, 
wi th  crys ta l  ro ta t ion  about  an  a rb i t r a ry  axis. The plane 
in which  ~ ,  is measured  is perpendicular  to the  ro ta t ion  
axis. 

The complete reflectivity expression may then be 
written as 

r~s ---- Qis[(2~)½U]-z exp [- (K~sAs)2/2~2 ] . (16) 

Three dimensionless ratios Rp, RR and RD which can 

be experimentally determined have been considered 
in attempting to provide a useful measure of the 
magnitude of the effects of simultaneous reflections. 
These are illustrated in Fig. 4. In the Renninger 
experiment, the Bragg angle is fixed at the center of 
the primary reflection peak and the crystal is rotated 
about the scattering vector. The quantity Rp is the 
maximum fractional change in the counting rate as 
the azimuthal angle is varied from the peak azimuthal 
angle ?90 to an angle ~A away from the simultaneous 
reflection peak. I t  is obtained from equations (9) and 
(16) by evaluating all the reflectivities at their peak 
value, 

Rp = API(Oo, cfo)lPl(Oo, erA) 
[ Qollo] (Qoi~_(Qli~ ll 

• \QoU \-Q~oU +t QI1 ) 
(17) 

In equations (17), (18) and (19), we takePl(0, %,t)= 
?'01/0. 

The quantity RR is obtained experimentally by 
integrating the intensity above the base line in the 
Renninger experiment and dividing by the normal 
integrated intensity in the absence of any simultaneous 
reflections. I t  is evaluated theoretically by identifying 
e in equation (16) with the azimuthal angle ~ and 
substituting the appropriate reflectivities into equa- 
tion (9). The primary reflectivity, r01, is evaluated at 
its peak because the rotation is about the primary 
scattering vector, and the integrations carried out 
over the other reflectivities. We obtain 

RR = I/IPl(Oo, cf)dq~/ l PI(O, erA)dO 

[ Qoxlo ] (Qoi) 1 

\ Q~I ) \ ~o / J  
(is) 

f ,~ P~( Oo,~)d¢ 

P~(eo,q~A~ 

T 
~o q'A 

Renninger experiment 

~o) 
~ f APd O.~o)dO 

(O,~A)dO 

Oo 0 .~ 

Double rocking curve experiment 

Rp P~(00,~A) RR f&(O,~oA)dO Ro- fpdO,~A)dO 

Fig. 4. Definition of ratios useful for quantitative evaluation of simu]taneous reflection effects. 
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Finally, the ratio RD is obtained by measuring two 
rocking curves in the normal manner, one with the 
azimuth fixed on a simultaneous reflection peak and 
one where no simultaneous reflections are present. The 
ratio is calculated by identifying s in equation (16) 
with the Bragg angle 0, substituting into equation (9), 
and integrating over all the reflectivities. We obtain 

RD = IAPl(O,q~o)dO/ f P~(O,q~A)dO 

F 1 (Qo,  
• ~Q01/  

--{1 ÷ (K°i)2}-½ \Qol/ 

2p((KOoi)2.~(KOl)2}_ ½ (QoiQil~ (l~o)] " (19) 

The ratios inside the summations in equations (17), 
(18) and (19) are frequently near unity, so tha t  the 
size of the effect is determined by the factor Qollo/(2z~)½~. 
This is the same factor as determines the size of the 
secondary extinction correction. We conclude tha t  the 
effects of simultaneous reflections may be present in 
all experiments where secondary extinction is not 
negligible, and the magnitudes of the two effects are 
frequently about the same. If there is doubt whether 
secondary extinction is important  in an experiment, 
the azimuthal sweep may be useful. If no intensity 
perturbations are observed, the evidence is strong for 
negligible secondary extinction. 

There are important  cases in which the simultaneous 
reflection effects are quite large even though secondary 
extinction may  be small. Large fractional intensity 
changes can occur when the secondary reflectivities 
are large compared with the primary reflectivity, 

) Qo-~' Qo-~ >> 1 . 

The extreme case is i l lustrated by Renninger's measure- 
ments on the diamond (222) reflection. In this case 
Q01 = 0, so that  only the positive term remains in equa- 
tion (9). 

If the Q ratios in equations (17), (18) and (19) are 
approximately equal to unity, then  the factor ldlo is of 
decisive influence in determining the magnitude and 
sign of the simultaneous reflection effects. A long 
secondary beam path length can result in a large 
positive intensity change even though the secondary 
extinction effect is small. This is demonstrated in the 
experiments described in the next section. 

Most of the above discussion applies to the X-ray 
case as well except tha t  the path lengths are determined 
in general by absorption rather  than  by the crystal 
geometry. 

Experimental studies 

Experiments similar to those described by Renninger 
(1937) were performed on iron crystals with the single- 

crystal neutron spectrometer at the MIT Nuclear 
• Reactor. The samples were mounted on a goniometer 
featuring a horizontal rotation axis and a device for 
adjusting the crystal orientation relative to the rota- 
tion axis. The final adjustment  of the crystal orienta- 
tion was made by sweeping the goniometer and neutron 
counter, in 0, 20 relationship, through the pr imary 
reflection peak at  four different azimuthal angles 
separated by 90 ° . When the four peaks occurred at  the 
same crystal 0 angle, the pr imary scattering vector 
was parallel to the azimuthal rotation axis. The 
goniometer and counter were then fixed at  the pr imary 
reflection peak and the crystal was slowly rotated in 
azimuth by means of a small electric motor. 

Typical results are shown in Fig. 5 for an iron crystal 
in the form of a flat plate (6.3 x 5.8 x 0.6 mm). The 
mosaic width parameter,  ~1, was found to be 0.40 ° by 
measuring the width of the rocking curve with a nearly 
perfect crystal of matched d spacing as the mono- 
chromator. The incident neutron beam was of large 
cross section, so tha t  the entire sample was bathed in 
a beam of nearly uniform intensity. A rather long 
wavelength (1.57 A) was used in the experiment so as 
to separate the secondary reflections in azimuthal 
angle. The indices above the peaks and dips correspond 
to reciprocal lattice points which lie on the sphere of 
reflection at  tha t  particular azimuth. The base line, 
representing the true (200) peak intensity,  was not 
flat because the mosaic spread exhibited directional 
properties. The pat tern  had reflection symmetry  about 
the 45 ° azimuth position. The two curves are for the 
same crystal, one with the pr imary beam in sym- 
metric reflection and the other in symmetric trans- 
mission. The difference between the two curves clearly 
illustrates the decisive influence of the sample geometry 
on the characteristics of the observed pattern.  Note 
tha t  in the symmetric reflection case, the positive 
peaks all result from secondary reflections of the type  
(lk/). For these cases, the direction of the secondary 
beam is in the plane of the crystal so tha t  the as- 
sociated path length is long. In  equation (17), this 
means tha t  the positive term is large by virtue of the 
large li/lo ratio. For the same secondary reflections 
in the symmetric transmission case, /~=10, and we 
observe tha t  the negative terms are dominant. 

The experiments differed in several aspects from 
the assumptions made in the theory. In the theory 
the beam cross section was small compared with the 
crystal while the opposite was true in the experiments. 
Suitable average path lengths based on the crystal 
dimensions and the various beam directions were used 
in the comparison between theory and experiment. 
Secondly, the basic assumption tha t  r~jl~ < 1 was not 
very well satisfied for the cases where l~ was in the 
plane of the crystal. To improve the approximation, 
those third order terms in the Taylor 's series expansion 
involving the long path length were included for the 
comparison calculation. This had the effect of provid- 
ing an extinction correction for the secondary beam; 
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Fig. 5. S imul taneous  reflect ion effects observed in the  200 reflection f rom iron as the  crys ta l  is ro t a t ed  a round  the  sca t ter ing  
vector.  P ronounced  differences are to be no ted  for the  reflect ing and  t r ansmi t t i ng  crystals .  
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Table 1. Comparison between calculated and observed intensity ratios 
P r i m a r y  ref lect ion:  Fe(200), ~ = 1"565 /~ 

Ref lect ion case Transmission case 
r 

R R R R Rp Rp RR RR Rp 
Calc. Obs. Calc. Obs. Calc. Obs. Calc. 

Rp 
Obs. 

(110) 0 o ( l i0 )  +0-30 +0 .36  +0 .29  +0 .28  --0.10 --0-10 --0-04 --0.05 

(121) 8.6 +0 .05  +0 .05  +0.07  +0 .03  --0.01 0.00 --0.01 0-00 

(211) 17.4 --0.14 --0.15 --0-07 --0.08 +0.01 +0.02  +0 .05  +0 .04  
(oTI) 
(222) 21-6 --0-15 --0.16 --0.07 --0.06 --0.03 --0-02 +0-02 --0.01 
(022) 
(1i2) 27.7 +0 .05  +0 .05  +0 .07  +0 .05  --0.06* --0-07* --0-04* --0-04* 
(103) 29.8 +0 .05  +0 .03  +0.07  +0 .02  

(220) 40.6 --0-13 --0.15 --0-07 --0.08 --0.11 --0.11 --0-06 --0.07 
(o2o) 

* The (112) and  (103) dips were no t  exper imenta l ly  resolved in this case. The calcula ted numbers  were added  for the  two cases. 

the positive term in equation (9) was multiplied by a 
factor [1-½(riol~+ri~l~)]. The theory also assumed 
that  the instrumental broadening was very small 
compared with the mosaic spread. In the experiment~ 
the instrumental broadening was smaller than the 
width due to the mosaic spread, but both were of the 
same order of magnitude. This disagreement between 
theory and experiment casts doubt on the validity of 
the peak ratio calculation (equation 17), but the 
integrated ratio (equation 18) should show better 
agreement with experiment. Of course, the mosaic 
distribution was not a true Gaussian and, as we have 
noted, it showed directional properties, so at best we 
can hope for only approximate agreement. 

The comparison between theory and experiment is 

shown in Table 1. The experimental values in Table 1 
are averages obtained in several runs. In most cases 
the spread in the experimental values was larger than 
the difference between the experimental average and 
the calculated number. The calculations contain one 
experimentally determined parameter, the factor 
Qollo/(2~)½ U which appears as a scale factor in equa- 
tions (17) and (18). This can be obtained either by 
measuring the peak absolute reflectivity in the 
absence of any secondary reflections, 

r Q01Z0 ] Q01t0 ] 
PdOo,%4)/Po " [ ( 2 ~ J  [1 (2~)½r/J (20) 

or by measuring U and the absolute integrated re- 
flectivity, 
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Fig. 6. Effect of sample thickness of the simultaneous reflection pat tern.  
For the positive peaks, l~/le decreases as the thickness increases. 

(110) ; I i I = I I t J 

(121) (211) (222) (1~2) (lo3) 1 
]1 A (o71) (022) A (220) J 

, ' ~  0"87 mm 

~ 1 " 4 0  mm : 

I PI(O,~A)dO/Po '~ Q01/0[1 - Q01/0/(2~)½~]]. (21) 

A value of 0-0674 for Q0110/(2~)½~ was obtained for the 
symmetric reflection case by the first method and 
0.0706 by the second method. The peak reflectivity 
value was used in the calculations since it is a direct 
measure of the experimental base line. The terms inside 
the summation in equations (17) and (18), which 
determine the direction and relative magnitude of the 
simultaneous reflection peaks, were calculated from 
the known reflection processes and the sample 
geometry. 

Another il lustration of the importance of sample 
geometry is contained in Fig. 6. Simultaneous reflec- 
tion pat terns were obtained for three samples, cut 
from the same crystal, and differing only in their 
thickness. With the pr imary beam in symmetric 
reflection, the positive peaks occur in cases where the 
secondary beam is in the plane of the crystal. As the 
crystal thickness is increased, these secondary path 
lengths remain the same, but  the pr imary path length, 
/0, increases. The ratio ldlo then decreases, and it fol- 
lows from equation (17) tha t  the positive peaks should 
decrease. The negative peaks should increase in 
magnitude, but  much less dramatically. These expecta- 
tions are fully confirmed by experiment. Quantitative 
comparison was not a t tempted for this experiment 
because the basic assumption of low secondary extinc- 
tion was not satisfied. 

A further confirmation of the importance of the 
secondary beam path length is contained in Fig. 7. 
The simultaneous reflections involved in this illustra- 
tion are the same as for the large positive peak at 0 o 
azimuth in Fig. 5. The two secondary beams are in the 
plane of the crystal as indicated in the figure. By 

(200) Primary ~ =  1 . 5 6 5 1 ~ ~ ~ 7 ~ ~  ] 
0.40 I-  (110) 1 -I 

' J  (110) ~ S eco=n d~ r, es | 

0.35 Sz 

/ I -1 

°'2°F t -1 

0 05~ " - " "  D - 

L 
_2 ° _1 ° 0 o 1 o 2 o 

Azimuthal angle 

F ig .  7. E f f e c t  of samp le  cross-sect ion ozl a s imu l t aneous  
reflection peak. As the effective size of the sample is reduced, 
the ratio l~/lo decreases. 

covering par t  of the crystal with a cadmium mask, 
the path length of the secondary beam which is 
effective in returning intensity back to the pr imary 
reflection is reduced. The positive term inside the 
summation in equation (17) gets progressively smaller 
as more and more of the crystal is covered while the 
negative terms remain unaffected. 

The theory contains some interesting predictions 
concerning the shape of the simultaneous reflection 
peaks as the azimuthal angle is varied. The negative 
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term in equation (9) contain only one Gaussian 
function because r01 is evaluated at its peak, while 
the positive term contains a product of two Gaussians. 
This means that  the positive term is generally narrower 
than the negative terms. We conclude that  peaks in 
which the positive terms is dominant should be nar- 
rower than the negative dips. Also, if all the assump- 
tions in the theory are valid, the positive peaks should 
have negative wings since the negative contribution 
falls off slower with/1~ than does the positive term. 
The same peak shape was predicted by Schermer 
(1961). This shape has not been observed for peaks 
resulting from a single secondary reflection, but it has 
been observed in one case where many secondary 
beams are present, some giving positive contributions 
and others negative. Based on a mosaic spread para- 
meter U = 0"4°, the calculated width at half maximum 
of the positive peak at 0 ° in the symmetric reflection 
of Fig. 5 is 1-0 °, while the dip at 0 ° in the transmission 
case should have a width of 2.2 °. The observed values 
are 1.1 ° and 2-6 °. 

The experiments give some measure of confidence 
in using the equations of the preceding section to 
calculate the effects of simultaneous reflections. I t  
should be emphasized that  the theoretical assumptions 
are the same as contained in the theory for the low 
secondary extinction case. Since experiments are 
usually arranged to meet the requirements of low 
secondary extinction, the theory presented here should 
be generally applicable to the practical case. 

Conc lus ions  

The present investigation emphasizes the necessity of 
considering the presence of secondary reflections in ac- 
curate measurements of primary reflection intensities 
from single crystals. An assessment of the secondary 
perturbations can sometimes be made by studying 
the azimuthal rocking curves but, as Renninger 
pointed out, this is difficult at short wavelengths 
because of the increased frequency of the simultaneous 
reflections. Our calculations for the iron pattern show 
that  in a 45 ° azimuthal sweep at ;t= 1.56/~ there are 
seven peaks due to reflections occurring simultaneously 
with the 200 primary one while at 0.716 A this 
number has increased to seventy eight. 

As a general rule, the magnitude of the intensity 
perturbations is comparable to the intensity corrections 
that arise due to secondary extinction. Hence the 
extraneous intensity effects may be reduced by using 
small crystals with broad mosaic character. However, 

even when secondary extinction is quite small, large 
positive secondary effects can occur if the linear re- 
flectivities in the 0 -+ 2 and 2 --> 1 processes are large 
compared with the primary 0 -> 1 process or if the 
secondary ray path length is long. The experimenter 
has some control over the latter event by selection of 
the crystal geometry. Clearly it is better to use a 
specimen crystal which is long in only one direction 
rather than a flat disk or square plate. 

In any event, it is wise to precede accurate intensity 
measurements by an azimuthal sweep to assay the 
simultaneous reflection effects. If these effects cannot 
be avoided the formulae presented above should 
allow intensity corrections to be applied with about 
the same accuracy as is present in secondary extinc- 
tion corrections. 

We are pleased to acknowledge helpful discussions 
with 0. J. Guentert and H. Cole. We are indebted to 
F. Ricci and W. C. Phillips for experimental help 
during the early stages of this work. 
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